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High-resolution measurements of superfluid density �s�T� and broadband quasiparticle conductivity �1���
have been used to probe the low-energy excitation spectrum of nodal quasiparticles in underdoped
YBa2Cu3O6+y. Penetration depth ��T� is measured to temperatures as low as 0.05 K. �1��� is measured from
0.1 to 20 GHz and is a direct probe of zero-energy quasiparticles. The data are compared with predictions for
a number of theoretical scenarios that compete with or otherwise modify pure dx2−y2 superconductivity, in
particular, commensurate and incommensurate spin and charge-density waves; dx2−y2 + is and dx2−y2 + idxy su-
perconductivity; circulating current phases; and the BCS-BEC crossover. We conclude that the data are con-
sistent with a pure dx2−y2 state in the presence of a small amount of strong scattering disorder, and are able to
rule out most candidate competing states either completely or to a level set by the energy scale of the disorder,
Td�4 K. Commensurate spin and charge-density orders, however, are not expected to alter the nodal spectrum
and therefore cannot be excluded.
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I. INTRODUCTION

The physics of the cuprate high-temperature supercon-
ductors is that of strong Coulomb repulsion in nearly half-
filled CuO2 planes.1,2 As charge carriers are doped into these
materials, the two most prominent electronic states are the
antiferromagnetic �AFM� Mott insulator and the d-wave su-
perconductor. While the AFM and the optimal-to-overdoped
superconductor appear to be well understood, the physics of
the underdoped part of the phase diagram that lies between
them remains firmly incompatible with standard theory. The
most prominent feature of this region is a pseudogap that
suppresses low-energy spin and charge fluctuations and per-
sists above the superconducting transition to a temperature
T�.3–5 The pseudogap temperature is highest close to the
Mott insulator and decreases monotonically as doping, p, is
increased toward optimal doping. Identifying the nature of
the pseudogap state remains a difficult and open problem.

States of matter are characterized by their symmetries and
their low-energy excitation spectra. d-wave superconductiv-
ity, for instance, breaks fourfold rotational symmetry and is
distinguished by the presence of nodal quasiparticles with a
characteristic linear energy spectrum. The d-wave state in the
cuprates was first identified from observations of a linear
temperature dependence of penetration depth, �, and super-
fluid density, �s�1 /�2.6 The ability of superfluid density to
couple directly to itinerant electronic degrees of freedom
gives it the potential to be a sensitive thermodynamic probe
of pseudogap physics, with many candidate states expected
to leave characteristic signatures in the low-energy quasipar-
ticle spectrum. Here we search for these signatures using
high-resolution measurements of penetration depth and
broadband quasiparticle conductivity, made on very clean
crystals of underdoped YBa2Cu3O6+y.

There have been a wide range of proposals put forward to
explain the cuprate pseudogap. In one important category,
strong pair correlations are already built into the normal

state. This scenario has its roots in Anderson’s resonating-
valence-bond spin liquid,7 and the idea that pair correlations
emerge directly from the Mott insulator remains a compel-
ling proposition. The “gossamer superconductor”—a BCS
wave function in which double occupancy has been heavily
suppressed—typifies this approach and may provide a useful
representation of the underdoped electronic state.8 The im-
plication for the phase diagram is that T� marks the forma-
tion of tightly bound Cooper pairs, with low phase stiffness
and strong quantum and thermal phase fluctuations heavily
suppressing Tc.

9–14 At temperatures not too far above the
superconducting transition, the idea of pre-existing pairs
finds support from a number of experiments: terahertz spec-
troscopy reveals a finite phase stiffness;15 Nernst-effect mea-
surements appear to detect the phase-slip voltage from ther-
mally diffusing vortices;16,17 high-field magnetometry re-
veals excess diamagnetism;18 and scanning tunnel micros-
copy �STM� �Ref. 19� and �SR �Ref. 20� detect what appear
to be droplets of precursor superconductor. Related to this,
the theory of the BCS to Bose-Einstein condensate �BEC�
crossover makes a prediction that can also be tested here: a
T3/2 power law in �s�T�, due to the direct thermal excitation
of bound Cooper pairs.21,22

Another class of proposals seeks to explain the pseudogap
in terms of competing orders and quantum criticality. In such
a scenario, T��p� marks the boundary of a distinct thermody-
namic phase; must be accompanied by a broken symmetry;
and goes to zero at a quantum critical point within the super-
conducting phase. This idea was initially motivated by the
observation near optimal doping of so-called marginal
Fermi-liquid behavior,23 in which unusual power laws in re-
sistivity ��T�, optical conductivity �1���, and other physical
quantities could be understood in terms of scattering from a
scale-invariant fluctuation spectrum, as would be expected
near a zero-temperature critical point.24 On crossing T�, these
fluctuations should generically condense to form the broken
symmetry state of the pseudogap phase. While there is evi-
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dence of an AFM quantum critical point in electron-doped
materials,25 the situation on the hole-doped side is much less
clear. Identification of a particular competing order that ap-
pears at T��p� would have strong implications not just for the
pseudogap but for the origin of non-Fermi-liquid behavior
elsewhere in the cuprate phase diagram.

Competing orders are, in fact, prevalent in the cuprates, in
part as a result of the extreme sensitivity of the doped Mott
insulator to chemical disorder.26 Outside the AFM phase,
long-range magnetic order is replaced by glassy spin corre-
lations,27–29 although this short-range magnetism is likely a
response to chemical imperfections.26,30 Neutron scattering
experiments on La2−xSrxCuO4 have revealed incommensu-
rate spin correlations in superconducting samples31–33 that
were later identified as stripe ordering of spins and holes.34,35

Stripe correlations appear to be widespread in the under-
doped cuprates, and are particularly strong near p= 1

8 dop-
ing.30 Nematic order, possibly due to fluctuating stripes, has
recently been detected in YBa2Cu3O6.45.

36 In applied field,
the suppression of superconductivity in vortex cores37,38

leads to coexisting superconductivity and spin-density-wave
order.39–43 Scanning tunneling spectroscopy of the vortex
cores reveals that this is accompanied by prominent check-
erboard charge-density order.44 Similar four-lattice-constant
modulations of the density of states are seen in zero field at
various points in the phase diagram.45,46 For the most part,
these competing orders occur in narrow ranges of doping; or
in particular materials; or in response to external perturba-
tions such as point disorder or applied magnetic field. While
they attest to the complexity of the doped Mott insulator,26

they offer only hints at the physics underlying the formation
of the pseudogap.

The lack of compatibility of the observed ordered states
with T��p� has led to interest in “hidden orders,” in which the
broken symmetry is subtle and difficult to detect with stan-
dard scattering experiments. Proposals include circulating
current phases that preserve translational symmetry,47–49 and
orbital antiferromagnetism, for example, the d-density wave
�DDW� state.50 Interestingly, a set of recent experiments now
appears to have detected signatures of one or more of these
phases. �SR �Ref. 51� and polar Kerr effect52 have estab-
lished the onset of time-reversal-symmetry breaking �TRSB�
at T��p� in YBa2Cu3O6+y, but the signals are extremely
weak. It has been suggested that a variant of the DDW, the
dxy + idx2−y2 density wave,53 would contain a subdominant but
macroscopic TRSB component and be consistent with the
small magnitude of the observed effects. Spin-polarized neu-
tron scattering on YBa2Cu3O6+y has detected weak signa-
tures of a novel magnetic order that preserves translational
symmetry,54 and has a form consistent with the �II circulat-
ing current phase proposed by Varma,49 shown in schematic
form in the inset of Fig. 2. The detailed picture is compli-
cated by the presence of an in-plane component of magnetic
moment, although it has been suggested that this could arise
from orbital currents that circulate through apical oxygens
while preserving the �II symmetry.56 It also remains to be
seen how ubiquitous the effects are: �SR experiments on
La2−xSrxCuO4 have so far failed to observe TRSB,57 but have
not yet been carried out with the same sensitivity as for
YBa2Cu3O6+y. In contrast, new neutron scattering experi-

ments58 on HgBa2CuO4+� have detected the same type of �II
magnetic order seen in YBa2Cu3O6+y. As we will discuss in
more detail below, this type of order has a strong effect on
the low-energy states of the superconductor, and should be
highly visible in measurements of �s�T�.

Finally, there have been suggestions that pure dx2−y2 su-
perconductivity may compete with superconducting states of
different symmetry,59–61 motivated in part by reports of
anomalously large inelastic scattering of nodal quasiparticles
below Tc.

15,62 This critical-like scattering has been shown to
be compatible with a quantum phase transition to a dx2−y2

+ is or dx2−y2 + idxy state.61 To date, there is a limited amount
of direct experimental evidence in support of such
phases63–65—here we use measurements of superfluid den-
sity to place tight constraints on the existence of such states
in YBa2Cu3O6+y.

This paper is organized as follows. In Sec. II we show
how measurements of penetration depth and broadband mi-
crowave conductivity can together be used as a probe of the
quasiparticle excitation spectrum and the structure of the su-
perconducting energy gap. In Sec. III we catalog how differ-
ent competing orders affect the superfluid density, including
the effect of disorder. In Sec. IV we introduce the experimen-
tal methods used to measure superfluid density and broad-
band microwave conductivity. Results are presented and dis-
cussed in Sec. V, followed by a summary of our conclusions
in Sec. VI. The appendix presents analytic results for the
effect of disorder on dx2−y2, dx2−y2 + idxy, and dx2−y2 + is-type
superconductors with isotropic Fermi surfaces, and shows
how this eventually blurs the distinction between dx2−y2 and
dx2−y2 + idxy states.

II. PENETRATION DEPTH AND MICROWAVE
CONDUCTIVITY

Microwave experiments can be used to probe the low-
energy excitation spectrum of a superconductor in two ways:
through the temperature dependence of the penetration depth
��T�; and from broadband measurements of the oscillator
strength in the finite-frequency quasiparticle conductivity
spectrum �1�� ,T�. The theory of penetration depth and mi-
crowave conductivity of unconventional superconductors has
been developed in great detail,66–74 but useful insights about
low-lying excitations can be obtained from the weak-
coupling BCS theory. For the case of an isotropic Fermi
surface, which should be adequate for describing the low-
lying excitations in the cuprates, ��T� is given by75,76

�0
2

�2�T�
= 1 − �

−�

�

d	�−
� f

�	
�N�	� �1�

=
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�

−�
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� �N�	�

�	
. �2�

Here �0 is the zero-temperature penetration depth in the ab-
sence of disorder and competing phases, and f�	 /T� is the
Fermi function. A Sommerfeld expansion reveals the direct
connection between ��T� and the normalized density of qua-
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siparticle states N�	�: if N�	�=N0+N1	+ 1
2N2	2+¯ then

�0
2 /�2�T�=1−N0−2 ln 2N1kBT− 
2

6 N2�kBT�2−¯. The resid-
ual density of states �DOS� N0 represents zero-energy exci-
tations, which may arise in a superconductor either from im-
purity pair breaking or from certain types of competing or-
der, notably the �II-type circulating current phase.49,55 Note
that N0 does not appear in the temperature dependence of �,
but instead results in a deviation of ��T→0� from �0. This
shift in penetration depth is difficult to resolve experimen-
tally, because �0 is neither known a priori nor can the abso-
lute value of ��T→0� usually be measured with sufficient
accuracy. However, a direct determination of N0 can be ob-
tained from the uncondensed spectral weight in the quasipar-
ticle conductivity �1�� ,T�. From the oscillator strength sum
rule,

N0 =
2



�0�0

2�
0

�c

�1��,T → 0�d� , �3�

where �c is a frequency cutoff chosen to capture the oscil-
lator strength of the conduction electrons only.

In a clean-limit BCS superconductor, N�	� is determined
by the k-space structure of the superconducting order param-
eter �k: N�	�=Re�	 /		2−�k

2
FS, where �¯ 
FS denotes a
Fermi surface average. This makes �s�T� a sensitive probe of
order parameter symmetry. In particular, for a d-wave super-
conductor in two dimensions, the linear dispersion of �k
about the gap nodes leads to N�	��	 and ��s�T��T. An
s-wave superconductor, by contrast, usually has a finite en-
ergy gap and shows activated behavior, �s�T��exp�−�min /
kBT�, where �min is the minimum of the energy gap on the
Fermi surface. The effect of impurity scattering on N�	� and
�s�T� is important and is reviewed in the appendix, where we
give analytic results for dx2−y2, dx2−y2 + idxy, and dx2−y2 + is su-
perconductors with isotropic Fermi surfaces in the presence
of point defects. The main effect of disorder is for the qua-
siparticles to acquire a lifetime, the magnitude and energy
dependence of which depend on the concentration and scat-
tering strength of the defects. Near the unitarity limit, scat-
tering leads to a zero-energy resonance that overlaps with the
continuum of quasiparticle states in the dx2−y2-wave super-
conductor, resulting in a residual density of states in N�	�
and a crossover to T2 behavior in �s�T�. This also happens
for the dx2−y2 + idxy superconductor, despite there initially be-
ing a finite gap in the excitation spectrum. As a result, above
a certain level of disorder, dx2−y2 and dx2−y2 + idxy states be-
come impossible to tell apart using microwave spectroscopy.
In Fig. 9 we show how the distinction is lost when the energy
scale of the disorder, kBTd becomes comparable to �dxy

. The
dx2−y2 + is superconductor is different in this respect: nonmag-
netic scatterers do not cause pair breaking at low energies,
and the gap in the spectrum is robust.

III. SUPERFLUID DENSITY AND COMPETING ORDERS

As a sensitive thermodynamic probe that couples directly
to current-carrying excitations, measurements of superfluid
density are well suited to detecting changes in the nodal
quasiparticle spectrum arising from competing orders and

other physics. A number of authors have investigated these
effects theoretically. Sharapov and Carbotte77 have per-
formed calculations for a dx2−y2 + idxy order parameter and for
incommensurate spin density waves �SDWs� that nest the
nodal points �nested SDW�, obtaining analytic results for
�s�T→0� and its leading temperature corrections. In the ab-
sence of disorder they find that both the nested SDW and the
dx2−y2 + idxy superconductor have a finite gap everywhere on
the Fermi surface, leading to activated exponential behavior
�s�T��exp�−�� /kBT�, where �� is the magnitude of the
SDW or dxy gap. However, nested SDW orders compete for
Fermi surface, removing nodal states from the T=0 conden-
sate. In contrast, a transition to a clean dx2−y2 + idxy state
leaves �s�T→0� unchanged. Unfortunately, this distinction is
difficult to detect experimentally, for the reasons discussed in
Sec. II. In the presence of disorder, both the nested SDW and
dx2−y2 + idxy states develop a leading quadratic temperature
dependence, �s�T2, similar to that of a dirty dx2−y2 super-
conductor. However, an experimentally detectable difference
now arises: pair breaking in the dx2−y2 + idxy state is accom-
panied by zero-energy quasiparticles, whereas the disordered
SDW continues to remove low-energy states without creating
a residual DOS. Atkinson78 has studied the competition be-
tween nested, incommensurate SDW and dx2−y2 superconduc-
tivity numerically and finds broadly similar results, pointing
out that on the basis of the temperature dependence of �s

alone, the effect of disordered magnetism cannot be distin-
guished from dirty but pure d-wave superconductivity. He
shows that the suppression of zero-temperature superfluid
density in the nested SDW case arises because nodal Cooper
pairs cease to carry a well-defined current. Modre et al.79

have studied the dx2−y2 + is pairing state, which also has a
finite energy gap and activated behavior in �s�T� at low tem-
perature. In contrast to the dx2−y2 + idxy case, the dx2−y2 + is gap
is stable in the presence of disorder of any strength. In the
appendix we show how this arises from impurity renormal-
ization of the s-wave gap component. Berg et al.55 have stud-
ied the stability of the nodal quasiparticle spectrum in the
presence of commensurate competing orders of all types. For
commensurate perturbations that do not nest the nodal
points, they prove that if the perturbation is invariant under
time reversal or time reversal followed by a lattice transla-
tion, the nodal spectrum is stable. One example of this is
competition from nematic order, which has been shown to
shift the nodes in k space, but leave the nodal structure
intact.80 While it remains uncertain whether the converse of
their result holds in general, Berg et al.55 have examined
several important cases in which the nodal spectrum breaks
down, including certain stripelike arrangements of spin and
charge densities, and the �II circulating-current phase that
has been detected by neutron scattering in YBa2Cu3O6+y and
HgBa2CuO4+�. Confining themselves to a one-band model of
the CuO2 planes, Berg et al.55 have used the simpler arrange-
ment of orbital currents shown in Fig. 2, which is equivalent
to the �II state in the more complicated three-band Cu-O
lattice of Ref. 49. For a perturbation to the pure dx2−y2 super-
conductor of the form
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W = − i�cc��
rr��

rr�cr�
† cr�� + H.c. , �4�

where rr�= �1 is determined by the direction of the bond
currents in Fig. 2, they find excitation energies Ek

�=Ek
0

+2�cc�sin�kxa�−sin�kya�+sin��ky −kx�a��. Here Ek
0 is the un-

perturbed d-wave spectrum and a is the lattice spacing. The
perturbed nodal spectrum for the �II state is plotted in Fig. 1.
The effect of the circulating currents is similar to the Doppler
shift from a uniform current applied along a diagonal direc-
tion: one node shifts up in energy by �4�cc, one node shifts
down, and two are unperturbed. The individual contributions
to the low-energy DOS are plotted in Fig. 2 and the com-
bined DOS is shown in Table I. The net effect on N�	� is a
finite residual DOS�2�cc /�0, and a kink at 	�4�cc above
which the linear energy dependence doubles in slope. In the
clean limit, the superfluid density can be obtained from Eqs.
�1� and �2� and is plotted in Table I. The limiting low-
temperature behavior of �s�T� is linear, arising from excita-
tions near the two unperturbed nodes. At a temperature of
order 4�cc /kB, �s�T� crosses over to a second linear regime
in which all four nodes contribute and the temperature slope
doubles. In a clean sample, the combination of a residual
DOS and a kink in �s�T� separating two linear regimes

should be easily observable in experiments. Calculations in
the presence of disorder have not been carried out, but we
expect strong scattering impurities to induce additional re-
sidual DOS and to cause a crossover to T2 behavior in �s�T�,
as is seen in dx2−y2 and dx2−y2 + idxy superconductors. Al-
though disorder will mask the effect of circulating currents
when the crossover temperature Td�4�cc /kB, it is expected
that tight limits on the size of �cc can nevertheless be placed,
either using �s�T� or from the magnitude of the uncondensed
spectral weight in �1�� ,T→0�.

The effect of competing orders on �s�T� and the residual
DOS is summarized in Table I. The SDW results are for the
case of ordering wave vectors that nest the nodal points. The
response to nested charge-density waves is expected to be
broadly similar, with the opening of a finite nodal gap that
competes for Fermi surface.

IV. EXPERIMENT

Measurements of �s�T� and �1�� ,T� have been made on a
single-crystal ellipsoid of YBa2Cu3O6.333, prepared as de-
scribed in Ref. 81. Following high-pressure annealing under
a hydrostatic pressure of 35 kbar, controlled relaxation of
oxygen order in the CuO chains has been used to continu-
ously tune Tc in the range 3–17 K. Broadband microwave
spectroscopy was carried out at a single doping early in the
sequence, for Tc=15.6 K. Measurements of �s�T� in the mil-
likelvin range were made in the fully relaxed state, where
Tc=3 K. The idea behind the doping process is that the oxi-
dation state of a chain copper atom depends on its oxygen
coordination, and that the average oxygen coordination de-
pends in turn on the degree of oxygen order in the
chains.82,83 With increasing average oxygen coordination,
electrons are increasingly drawn in from the neighboring
CuO2 planes, leading to their becoming hole doped. Veal et
al.83 showed that these effects are particularly strong at low
dopings, and that the reversible ordering and disordering of
the CuO chain fragments with low-temperature annealing
was accompanied by orthorhombic distortion and bond
length changes that indicated Tc was changing in a way con-
sistent with concommitant hole doping of the CuO2 planes.
While there is of course some change in the disorder realiza-
tion as chain fragments are annealed, we have several rea-
sons to believe that the direct effect of disorder on Tc,
through pair-breaking effects, is negligible. First, the chain
oxygen defects are located away from the CuO2 planes, and
as such are expected to be weak, small-angle scatterers. Such
defects are known to make only a small contribution to pair
breaking.72 Second, as will be discussed below, the disorder
crossover temperature Td is only weakly dependent on dop-
ing, and actually decreases slightly as Tc is reduced. In ad-
dition, the magnitude of the disorder temperature, 4 K to
5 K, is too large to be attributed predominantly to weak-
scattering defects such as chain oxygen disorder, and likely
requires the presence of a small density of strong scattering
impurities, most likely cation disorder, as discussed for
YBa2Cu3O6.993 by Nunner and Hirschfeld.84 These cations
are immobile at room temperature, and so there is no change
in their configuration as we tune Tc. Finally, we have previ-

FIG. 1. �Color online� The presence of a perturbation of the
form Eq. �4�, from the �II-type circulating currents shown in Fig. 2,
modifies the nodal spectrum of the dx2−y2 superconductor in a char-
acteristic way: one node is shifted up in energy by �4�cc, one is
shifted down, and two are unperturbed.
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FIG. 2. �Color online� Individual nodal contributions to the den-
sity of states N�	� from a circulating current perturbation of the
form Eq. �4�. Inset, upper left: the �II circulating current pattern
proposed in Ref. 49. Inset, lower right: an equivalent current pattern
within a one-band model of the CuO2 planes �Ref. 55�.
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ously carried out an empirical test of the doping mechanism
in these lightly doped samples, in experiments that measure
the c-axis superfluid density. We prepared samples with dif-
ferent oxygen concentration in the vicinity of YBa2Cu3O6.35,
but with oxygen order adjusted to produce the same Tc, and
found that the samples had the same c-axis superfluid den-
sity, indicating that the dominant contribution to Tc indeed
came from a change in hole doping, not disorder.85 On the
basis of all of this evidence, we conclude that room tempera-

ture annealing is an effective way of directly tuning hole
doping.

�s�T� is obtained from 2.64 GHz surface impedance mea-
surements, as described in Refs. 81 and 86. The sample is
positioned at the H-field antinode of the TE01� mode of a
rutile dielectric resonator, with the microwave H field ori-
ented along the c axis of the ellipsoid to induce ab-plane
screening currents. Surface impedance Zs=Rs+ iXs is ob-
tained using the cavity perturbation approximation

TABLE I. �Color online� Effect of competing orders on the superfluid density of a dx2−y2 superconductor. The first column shows results
for the pure dx2−y2 state. Subsequent columns show the effect of competition from: �II-type circulating currents �Refs. 49 and 55�; dx2−y2

+ is superconductivity �Ref. 79�; dx2−y2 + idxy superconductivity �Ref. 77�; and an SDW that nests the nodal points �Refs. 77 and 78�. The first
row shows clean-limit excitation spectra for the near-nodal quasiparticles. The second row gives the density of states N�	�, both for clean
systems and in the presence of disorder. Note that the effect of disorder has not been calculated for the �II-type perturbation, and that
nonmagnetic disorder has essentially no effect on the dx2−y2 + is superconductor. The third row shows the temperature dependence of the
superfluid density �s�T�, including deviations from full condensation as T→0 due to the presence of zero-energy quasiparticles. The fourth
row indicates whether a residual density of states is expected to be seen in �1�� ,T→0�, and the fifth row gives the leading low-temperature
behavior of the superfluid density. Details of the calculations are given in the appendix for the dx2−y2, dx2−y2 + is and dx2−y2 + idxy states. Dirty
limit calculations have been made for unitarity limit scatterers.
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Rs + i�Xs = �res��fB�T� − 2i�f0�T�� , �5�

where �fB�T� is the change in bandwidth of the TE01� mode
upon inserting the sample into the cavity; �f0�T� is the shift
in resonant frequency upon warming the sample from base
temperature to T; and �res is an empirically determined scale
factor. The absolute reactance is set by shifting �Xs�T� so
that it matches Rs�T� in the normal state. We expect local
electrodynamics to be a good approximation, giving �=�1
− i�2= i	�0 /Zs

2 for the microwave conductivity. The super-
fluid density is defined to be �s�1 /�2=	�0�2.

Broadband spectroscopy of the quasiparticle conductivity
�1�� ,T� has been carried out using bolometric measure-
ments of Rs�� ,T� between 0.1 and 20 GHz, as described in
Refs. 87 and 88. The YBa2Cu3O6.333 ellipsoid and a Ag:Au
reference sample were positioned in symmetric locations at
the end of a rectangular coaxial transmission line, with the
microwave H field again oriented along the c axis of the
ellipsoid. Rs�� ,T� has been inferred from the synchronous
rise in sample temperature in response to incident microwave
fields modulated at 1 Hz. The Ag:Au sample acts a power
meter, providing an absolute calibration. At low frequencies,
�1 can be obtained from Rs from a knowledge of the pen-
etration depth: in this limit �1�2Rs /�2�0

2�3. At higher fre-
quencies, the quasiparticle conductivity starts to contribute to
electromagnetic screening, effectively reducing �. The
shielding effect of the quasiparticle currents must be taken
into account self-consistently, and the procedure for doing
this is described in detail in Appendix C of Ref. 88. As part
of this process, the quasiparticle contribution to �2 is inferred
from a Kramers-Krönig transform of �1���. This in turn
requires a robust means of extrapolating �1��� outside the
measured frequency range. In previous work,87,89 we have
shown that the phenomenological form,

�1��� = �0/�1 + ��/��y� , �6�

works well for cuprate superconductors, with the exponent y
ranging from 1.4 to 1.7. A Drude model, on the other hand,

corresponds to y=2. Physically, the non-Drude exponents
stem from the strong energy dependence of scattering rate in
an unconventional superconductor. At low temperatures,
thermally excited quasiparticles make a relatively small con-
tribution to electromagnetic screening, so the extraction of
�1��� from Rs��� is not particularly sensitive to variations
in y. A similar procedure is used to estimate the quasiparticle
conductivity spectral weight: in that case there is more sen-
sitivity to the choice of exponent when integrating �1���.

V. RESULTS AND DISCUSSION

�s�T� is plotted in Fig. 3 for a subset of the dopings. The
most prominent feature of the data is the linear T dependence
of �s in the middle of the temperature range, which crosses
over to a weaker temperature dependence at low T. The main
questions about these data are: what is the limiting low-
temperature form of �s�T�?; is the crossover the result of
disorder?; and is the linear T dependence at higher tempera-
tures characteristic of the behavior of the ideal, clean sys-
tem? To address these issues, we first look at the low-
temperature range in more detail. Figure 4 plots the data
from Fig. 3 vs T2, showing that �s�T� indeed crosses over to
accurately quadratic behavior. For the lowest doping �the
fully relaxed state with Tc�3 K�, the sample has been re-
mounted in our dilution refrigerator system and measured
down to T=0.05 K. This data is plotted vs T2 in Fig. 5. We
see that the quadratic behavior is robust to the lowest tem-
peratures, neither flattening out to activated behavior nor
turning up to reveal a power law intermediate between T1

and T2.
To test whether the curvature is the result of disorder, we

switch now to broadband microwave spectroscopy, which
probes the spectral weight of the zero-energy quasiparticles.
Figure 6 shows Rs��� at T=1.7 K for the Tc=15.6 K dop-
ing. This has been converted to conductivity �1��� in Fig. 7,
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FIG. 3. �Color online� ab-plane superfluid density �s�T�
=�−2�T� shown at 13 of 37 dopings measured in this study. The
straight lines are linear fits the data between 5 K and Tc. The curved
lines are a quadratic fit below 4 K.
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FIG. 4. �Color online� �s�T� plotted versus T2. The straight lines
are quadratic fits to the data below 4 K except in the case of the
lowest doping �Tc=3 K�, where the fit is to just below Tc. The data
are linear in T2 up to T�5 K.
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using the self-consistent procedure described in the previous
section. As mentioned above, we use a phenomenological
form to fit to the conductivity: �1���=�0 / �1+ �� /��y�.
Spectra with y=1.4 and 1.7 provide equally good fits to the
Rs��� data in Fig. 6—a Drude fit �y=2�, however, shows
marked deviations at the high frequency end. At low fre-
quency there is a narrow peak in �1���, of uncertain origin,
that may be a fluctuation effect. In any case we are content to
omit it from the fitting procedure as it contains an insignifi-
cant fraction of the total oscillator strength. Using the phe-
nomenological model of conductivity, we calculate the un-
condensed spectral weight, for different choices of exponent.
Expressed in superfluid density units, we obtain ��s

=1.05 �m−2 for y=1.4 and ��s=0.70 �m−2 for y=1.7. Fig-
ure 3 also shows linear and quadratic fits to �s�T� at low
temperature. For comparison with the integrated T=1.7 K
spectral weight in �1���, we should use the difference be-
tween the linear extrapolation of �s to T=0, and �s�T
=1.7 K�: this is ��s=1.03 �m−2. As this falls within the
range estimated from integrating �1���, we conclude that the
crossover to T2 behavior in �s�T� is most likely a disorder
effect in an otherwise pure dx2−y2 state, and that linear fits to
�s�T� in the middle of the temperature range should provide
a good measure of the low-temperature slope in the absence
of disorder. In addition to the oscillator strength of the un-
condensed quasiparticles, �1��� also provides a measure of
the average relaxation rate of electrical transport currents,
1 /�tr, from the width parameter �. Using the fitting proce-
dures described above, we obtain 1 /�tr=25 GHz �1.2 K in
temperature units�, independent of the assumed value of the
exponent y. We will later compare this with values of scat-
tering rate inferred from pair-breaking effects. Although it
would be useful to study the doping dependence of 1 /�tr, at
this point we only have broadband microwave spectroscopy
at the one doping. It is difficult to obtain information on the
residual scattering rate by other means, such as extrapolation
of the normal-state resistivity as, in that case, the presence of
strong superconducting fluctuations and a log�T� upturn
make the extrapolation to zero temperature unreliable.

A useful characterization of the strength of pair-breaking
is provided by the temperature Td at which �s�T� crosses over
from quadratic to linear behavior. Using an interpolation for-
mula, ��s�T�=AT2 / �T+2Td�, similar to that of Ref. 72, Td is
defined to be the point at which the slope of the high-
temperature linear behavior, ��s=�T, matches the slope of
the low-temperature quadratic behavior, ��s=�T2. Using
values of � and � obtained from fits similar to those shown
in Figs. 3 and 4, we plot Td�� /2� in Fig. 8. The crossover
temperature lies between 4 K and 5 K at these low dopings
and shows very little doping dependence. This crossover
temperature is larger than in the best samples of Ortho-II
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FIG. 5. �Color online� For the lowest doping in this study �Tc

=3 K�, �s�T� has been measured down to T=0.05 K. The data,
plotted versus T2, reveal that the asymptotic low T behavior is qua-
dratic in temperature.
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FIG. 6. �Color online� Broadband bolometric measurement of
the surface resistance, Rs���, at T=1.7 K. Data are for a doping
state with Tc=15.6 K. The solid line is a fit using the phenomeno-
logical conductivity model, Eq. �6�, with y=1.7. A fit with y=1.4 is
practically indistinguishable and provides an equally good represen-
tation of the data. The dashed line, a best fit to the Drude model
�y=2�, shows clear deviations at high frequencies.
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FIG. 7. �Color online� The real part of the conductivity spectrum
determined from the Rs��� data in Fig. 6. The solid line is a fit to
the conductivity spectrum for y=1.7 using the phenomenological
model Eq. �6�. The small, narrow peak at low frequencies is a
robust result of the analysis and indicates long lived currents, pos-
sibly associated with superconducting fluctuations.
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YBa2Cu3O6.50 and Ortho-I YBa2Cu3O6.99, where Td is less
than 1 K. This may be linked to the lower degree of CuO
chain order in YBa2Cu3O6.333, which is known to be an im-
portant source of residual scattering in the best YBa2Cu3O6+y
samples,90 but Td is also likely to be enhanced by proximity
to the Mott insulator. Td is expected to be closely linked to
the single-particle scattering rate, 1 /�sp. In the strong scatter-
ing limit, discussed in Ref. 72, Td=0.33� /kB�sp, from which
we would infer � /kB�sp�13.5 K from our data. At first
sight, there seems to be a large discrepancy with the relax-
ation rate obtained from �1���. However, the rate at which
electrical currents relax is always smaller than the single par-
ticle scattering rate, as more than one scattering event is
usually required to fully randomize momentum. The differ-
ence between the two scattering rates can be particularly
strong in a d-wave superconductor,91 especially in situations
where small-angle scattering is important, such as from out-
of-plane defects. Also shown in Fig. 8 is the residual DOS,
expressed in superfluid density units as ��s, and inferred
from the difference between linear and quadratic extrapola-
tions of �s�T� to T=0. ��s falls on underdoping, but remains
a roughly constant fraction of �s�T=0�, consistent with the
weak doping dependence of Td.

We are able to draw tight conclusions from these mea-
surements about the types and magnitudes of electronic order
than might be competing with pure dx2−y2 superconductivity
in YBa2Cu3O6+y. We emphasize that to do this it is essential
to have measurements of both the asymptotic low-
temperature form of �s�T�, and the residual DOS from
�1���. On the basis of the limiting quadratic T dependence,
which we have followed down to 0.05 K, we can rule out
any of the clean-limit behaviors shown in Table I, as well as
the dx2−y2 + is state in the presence of disorder. We can also

exclude the BCS-BEC crossover scenario, which predicts a
T3/2 term in �s�T� from incoherent Cooper pairs excited from
the condensate. When disorder is included, four of the re-
maining states in Table I are compatible with quadratic be-
havior in �s�T�. Of these, nested spin and charge-density
waves can immediately be eliminated, as they are not ex-
pected to be accompanied by a residual DOS. Of the remain-
ing three, the simplest possibility is pure dx2−y2 superconduc-
tivity in the presence of a small amount of strong scattering
disorder. However, we cannot rule out a small idxy compo-
nent, nor a weak �II-type circulating current phase. Never-
theless, we can place tight limits on the size of such effects.
We show in Fig. 9 that the idxy state only becomes visible
once �dxy

�kBTd. Similarly, we would expect the clean-limit
behavior of the �II state to be apparent once 4�cc�kBTd,
meaning that if a perturbation of the form Eq. �4� is present,
then �cc must be 1 K or less.92 The constraints become even
tighter in Ortho-II YBa2Cu3O6.50 and Ortho-I YBa2Cu3O6.99,
where the disorder scale Td is less than 1 K.

Finally, while we can rule out nested spin and charge-
density waves, our data say very little about commensurate
orders that connect parts of the Fermi surface away from the
nodes, as these will generally not alter the low-energy spec-
trum. One such a scenario has been revealed by recent STM
measurements on Bi2Sr2CaCu2O8+�,93 which show ordered,
nondispersing modulations of the DOS at high energies and
simultaneously, at low energies, arcs of Bogoliubov quasi-
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FIG. 8. �Color online� The doping dependence of the disorder
crossover temperature Td and the uncondensed superfluid density
��s. Td is the temperature at which linear and quadratic fits to �s�T�
match in slope, as defined in the text. ��s is the uncondensed spec-
tral weight predicted from the difference between linear and qua-
dratic extrapolations of �s�T� to T=0, and is consistent with the
residual conductivity spectral weight directly measured at Tc

=15.6 K via broadband spectroscopy.
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particles associated with the nodal dx2−y2 spectrum. The “Bo-
goliubov arcs” appear to terminate on the Bragg plane join-
ing �0,
� and �
 ,0� points, leaving the nodal spectrum
intact. This would be compatible with the conclusions we
draw here about YBa2Cu3O6+y.

VI. CONCLUSIONS

We have shown that measurements of superfluid density
can be used as a sensitive probe of electronic orders than
might compete with pure dx2−y2 superconductivity. Broad-
band conductivity measurements provide complementary in-
formation on zero-energy excitations that would be difficult
to infer from �s�T� alone. Measurements on underdoped
YBa2Cu3O6.333 reveal a crossover from linear to quadratic
behavior in �s�T� below a temperature Td�4–5 K. The T2

power law has been followed as low as 0.05 K and appears
to be the asymptotic low-temperature behavior. It is also ac-
companied by a residual conductivity spectral weight of cor-
responding magnitude, leading us to conclude that the cross-
over is a disorder effect, with pair breaking producing zero-
energy excitations. The observations immediately allow us to
rule out BCS-BEC crossover physics; competition from
dx2−y2 + is superconductivity; and spin and charge-density
waves that nest the nodal points. Due to the presence of
disorder, we cannot eliminate the possibility of either disor-
dered dx2−y2 + idxy superconductivity, provided �dxy

�4–5 K;
or a perturbation of the form of Eq. �4� from a �II-type
circulating current phase, as long as �cc�1 K. The small
magnitude of such a term would be compatible with related
observations from �SR,51 neutron scattering54 and polar
Kerr-effect measurements.52 Our observations find a natural
interpretation in terms of d-wave quasiparticles in the pres-
ence of small amounts of strong scattering disorder. While
we cannot rule out other physics, such as classical94 or quan-
tum phase fluctuations,14 the form of the results suggests that
fermionic d-wave quasiparticles remain an important factor
down to the lowest dopings.
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APPENDIX: dx2−y2, dx2−y2 + idxy, AND dx2−y2 + is STATES

The dx2−y2 + idxy state and the dx2−y2 + is state are two can-
didate order parameters that may compete with pure dx2−y2

superconductivity in the cuprates. In this appendix we review
the theory of the penetration depth in the presence of disor-
der and gauge the extent to which these states can be distin-
guished by microwave experiments. The theory of unconven-
tional superconductivity in the presence of elastic scattering
disorder has been developed by many authors,66–74 and has
been reviewed in several places.95–97 In these systems, disor-
der not only imparts a finite lifetime to the quasiparticles, it

alters the excitation spectrum by pair breaking, and the two
effects must be dealt with together. The self-consistent
t-matrix approximation �SCTMA� provides a powerful ap-
proach for capturing this physics, particularly in the resonant
scattering limit, where the impurity is on the verge of bind-
ing a quasiparticle at the Fermi energy. In the SCTMA, im-
purities are usually approximated as point defects that scatter
in the s-wave channel. The effect of the disorder is to renor-
malize the quasiparticle energy 	 and the superconducting
gap �k, which can be expressed in the following way:

	 → 	̃ = 	 + i
�
N�	�

c2 + N2�	� + P2�	�
, �A1�

�k → �̃k = �k + i
�
P�	�

c2 + N2�	� + P2�	�
. �A2�

Here �=nin /
2D��F�, where ni is the impurity concentra-
tion, n is the conduction electron density, and D��F� is the
density of states at the Fermi level.72 The impurity scattering
strength is characterized by c, the cotangent of the s-wave
scattering phase shift. The quasiparticle density N�	� and
pair density P�	� depend on details of the particular super-
conducting state and are defined below for the different types
of order parameter. For purely unconventional order param-
eters, ��k
FS=0 and P�	� vanishes—these states are there-
fore unrenormalized by s-wave scatterers.

We are primarily interested in the behavior of the low-
energy excitations so, without loss of generality, we take the
two-dimensional Fermi surface to be isotropic, and the gap
functions to be the simplest cylindrical harmonics of the re-
quired symmetry:

�dx2−y2 = �0 cos 2� , �A3�

�dxy
= �0 sin 2� , �A4�

�s = ��0. �A5�

Here � measures the angle from the Cu-O bond direction
and  and � are constants. For the pure dx2−y2 state there is no
gap renormalization. The quasiparticle density is

N�	� =� 	̃

		̃2 − �0
2 cos2 2�

�
�

=
2



K��0

2

	̃2� , �A6�

where �¯ 
� is an angle average around the cylindrical
Fermi surface, K�x� is the complete elliptic integral of the
first kind, and the branch of the square root in Eq. �A6� is
chosen so that 	̃ has positive imaginary part. In the strong-
scattering �unitarity� limit, for instance, c=0 and 	̃�	� is a
root of

	̃ = 	 + i
2�/2K��0
2/	̃2� . �A7�

	̃�	� encodes all the physics of scattering and pair breaking.
Inserted into the real part of Eq. �A6� it gives the quasipar-
ticle density of states in the presence of disorder. To calculate
penetration depth using 	̃, a modification of Eq. �2� is used72
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�0
2

�2�T�
=

1

2
�

−�

�

d	 tanh
	

2kBT
Re� �̃k

2

�	̃2 − �̃k
2�3/2�

FS

. �A8�

The density of states factor is

� �̃k
2

�	̃2 − �̃k
2�3/2�

FS

=� �0
2 cos2 2�

�	̃2 − �0
2 cos2 2��3/2�

�

=
2


	̃
�K��0

2/	̃2� +
	̃2

�0
2 − 	̃2E��0

2/	̃2�� ,

�A9�

where E�x� is the complete elliptic integral of the second
kind.

For the dx2−y2 + idxy state, ����=�0�cos 2�+ i sin 2��,
and there is similarly no gap renormalization. The quasipar-
ticle density is

N�	� =� 	̃

		̃2 − �0
2�cos2 2� + 2 sin2 2����

=
2




	̃

		̃2 − 2�0
2
K� �1 − 2��0

2

	̃2 − 2�0
2 � . �A10�

The density of states factor in Eq. �A8� becomes

� �̃k
2

�	̃2 − �̃k
2�3/2�

FS

=� �0
2�cos2 2� + 2 sin2 2��

�	̃2 − �0
2�cos2 2� + 2 sin2 2���3/2�

�

=
2




1

		̃2 − 2�0
2�K� �1 − 2��0

2

	̃2 − 2�0
2 � +

	̃2

�0
2 − 	̃2E� �1 − 2��0

2

	̃2 − 2�0
2 �� .

�A11�

In the dx2−y2 + is state, impurity renormalization of �s must be
taken into account. The renormalization Eqs. �A1� and �A2�
can be rewritten

1 =
	

	̃
+ i
�

N�	�/	̃
c2 + N2�	� + P2�	�

, �A12�

1 =
�s

�̃s

+ i
�
P�	�/�̃s

c2 + N2�	� + P2�	�
, �A13�

where

N�	� =� 	̃

		̃2 − �0
2 cos2 2� − �̃s

2�
�

, �A14�

P�	� =� �̃s

		̃2 − �0
2 cos2 2� − �̃s

2�
�

. �A15�

Since N�	� / 	̃= P�	� / �̃s, the quantities 	 / 	̃ and �s / �̃s obey

identical equations and therefore �̃s=�s	̃ /	. Equations
�A12� and �A13� can then be combined into a single equation

	̃ = 	 + i
�
N�	�

c2 + N2�	��1 + �s
2/	2�

, �A16�

where

N�	� =� 	̃

		̃2�1 − �s
2/	2� − �0

2 cos2 2�
�

�

=
2




1

	1 − �s
2/	2

K� �0
2

�1 − �s
2/	2�	̃2� . �A17�

The corresponding term in Eq. �A8� is

� �̃k
2

�	̃2 − �̃k
2�3/2�

FS

=� �0
2�cos2 2� + 2 sin2 2��

�	̃2 − �0
2�cos2 2� + 2 sin2 2���3/2�

�

=
2




1

	̃	1 −
�s

2

	2
�K� �0

2

�1 −
�s

2

	2�	̃2�
+

	̃2

�0
2 − �1 −

�s
2

	2�	̃2

E� �0
2

�1 −
�s

2

	2�	̃2�� . �A18�

We are now in a position to compare results for the three
order parameters. The forms for the density of states N�	�
and the superfluid density �s�T� are shown in Table I, both in
the clean limit and in the presence of strong scattering dis-
order �c=0�. The key feature of the clean dx2−y2 + idxy and
dx2−y2 + is states is a finite energy gap, giving rise to activated
behavior in �s�T�. The dx2−y2 + idxy and dx2−y2 + is states be-
have very differently in response to disorder. In the dx2−y2

+ is case, the energy gap is robust. This can be traced back to
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the expressions for the renormalized frequency, Eqs. �A16�
and �A17�. Impurity renormalization of �s leads to solutions
for 	̃ that are purely real for 	��s, preventing the forma-
tion of any low-lying quasiparticle states in N�	�.73 The
dx2−y2 + idxy case is quite different: pair breaking occurs for
even small amounts of disorder, leading immediately to a T2

term in �s�T�. The T2 term starts out weak, but grows in
magnitude until it is comparable to that of a pure dx2−y2 su-
perconductor with a similar amount of disorder. This cross-
over is plotted in Fig. 9, which shows that the dx2−y2 and
dx2−y2 + idxy states become indistinguishable when the energy
scale for the disorder, kBTd, becomes comparable to �dxy

.
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